Active and Precise Control of Microdroplet Division Using Horizontal Pneumatic Valves in Bifurcating Microchannel

نویسندگان

  • Dong Hyun Yoon
  • Junichi Ito
  • Tetsushi Sekiguchi
  • Shuichi Shoji
چکیده

This paper presents a microfluidic system for the active and precise control of microdroplet division in a micro device. Using two horizontal pneumatic valves formed at downstream of bifurcating microchannel, flow resistances of downstream channels were variably controlled. With the resistance control, volumetric ratio of downstream flows was changed and water-in-oil microdroplets were divided into two daughter droplets of different volume corresponding to the ratio. The microfluidic channels and pneumatic valves were fabricated by single-step soft lithography process of PDMS (polydimethylsiloxane) using SU-8 mold. A wide range control of the daughter droplets’ volume ratio was achieved by the simple channel structure. Volumetric ratio between large and small daughter droplets are ranged from 1 to 70, and the smallest droplet volume of 14 pL was obtained. The proposed microfluidic device is applicable for precise and high throughput droplet based digital synthesis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fuzzy gain scheduling of PID controller for stiction compensation in pneumatic control valve

Inherent nonlinearities like, deadband, stiction and hysteresis in control valves degenerate plant performance. Valve stiction standouts as a more widely recognized reason for poor execution in control loops. Measurement of valve stiction is essential to maintain scheduling. For industrial scenarios, loss of execution due to nonlinearity in control valves is an imperative issue that should be t...

متن کامل

Precise Position Control of a Pneumatic Servo Table System Consideration Dynamic Characteristics of Pneumatic Servo Valves

The performance of the pneumatic servo systems improved greatly as the pneumatic servo valves became commercially available in the late 1980s. At present, one of the best pneumatic servo valves has a dynamic response of 100 Hz and a spool position accuracy of 2% to the full stroke. By using these pneumatic servo valves, the precise position control by the pneumatic servo system has entered a pr...

متن کامل

Improved Tracking and Switching Performance of an Electro-Pneumatic Positioning System

For robotic systems that use on/off (solenoid) pneumatic actuators, a sliding mode control law for precise position control and low switching (open-close) activity of the valves is presented in this paper. Given a pneumatic actuator with two chambers and four solenoid valves, there are sixteen possible input combinations defined directly from the state of the four on/off valves present in the s...

متن کامل

Droplet Breakup Dynamics in Bi-Layer Bifurcating Microchannel

Breakup of droplets at bi-layer bifurcating junction in polydimethylsiloxane (PDMS) microchannel has been investigated by experiments and numerical simulation. The pressure drop in bi-layer bifurcating channel was investigated and compared with single-layer bifurcating channel. Daughter droplet size variation generated in bi-layer bifurcating microchannel was analyzed. The correlation was propo...

متن کامل

A Biomedical Application by Using Optimal Fuzzy Sliding-Mode Control

The development of biochips is a major thrust of the rapidly growing biotechnology industry. Research on biomedical or biochemical analysis miniaturization and integration has made explosive progress by using biochips recently. For example, capillary electrophoresis (CE), sample preconcentration, genomic DNA extraction, and DNA hybridization have been successfully miniaturized and operated in a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Micromachines

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2013